Check Whether the given two number are Twin prime | Java, Python, C & C++ program to check if two input numbers are Twin prime | Java, Python, C & C++ program to check if given numbers are Twin prime or not


Check Whether the given two number are Twin prime | Java, Python, C & C++ program to check if two input numbers are Twin prime | Java, Python, C & C++ program to check if given numbers are Twin prime or not


Explanation of the Code: Check Whether the given two number are Twin prime

The problem defines a "Twin Prime" as two prime numbers where the absolute difference between them is 2.

For example, the pair (41, 43) is a twin prime because both 41 and 43 are prime numbers, and their difference is 2.


  1. isPrime function:
    • This function checks whether a given number a is prime. It does so by iterating through numbers from 2 to a-1. If a is divisible by any number in this range, it is not prime.
  2. Main Program:
    • The program reads two integers a and b from the user.
    • It checks whether both a and b are prime numbers and if their absolute difference is 2 (|a - b| == 2).
    • If both conditions are satisfied, it prints that a and b are twin primes. Otherwise, it prints that they are not.


Check Whether the given two number are Twin prime | Java, Python, C & C++ program to check if input numbers are twisted prime | Java, Python, C & C++ program to check if given numbers are twisted prime or not
Check Whether the given two number are Twin prime | Java, Python, C & C++ program to check if two input numbers are Twin prime | Java, Python, C & C++ program to check if given numbers are Twin prime or not


Java Code: Check Whether the given two number are Twin prime 


import java.util.*;
public class twinPrime {
public static boolean isPrime(int a)
{
boolean prime=true;
for(int i=2;i<a;i++)
{
if(a%i==0)
{
prime=false;
break;
}

}
return prime;

}
public static void main(String[] args) {
Scanner read=new Scanner(System.in);
System.out.print("Enter the first number: ");
int a=read.nextInt();
System.out.print("Enter the second number: ");
int b=read.nextInt();

read.close();
if(isPrime(a) && isPrime(b)&& (Math.abs(a-b)==2))
{
System.out.println(a+" and "+b+" are Twin Prime");
}
else
{
System.out.println(a+" and "+b+" are not Twin Prime");

}

}
}

// |VICTORY| The code ran successfully !


Python Code: Check Whether the given two number are Twin prime 

def is_prime(a): for i in range(2, a): if a % i == 0: return False return True # Input and output a = int(input("Enter the first number: ")) b = int(input("Enter the second number: ")) if is_prime(a) and is_prime(b) and abs(a - b) == 2: print(f"{a} and {b} are Twin Primes.") else: print(f"{a} and {b} are not Twin Primes.")

 

C: Check Whether the given two number are Twin prime 

#include <stdio.h> int isPrime(int a) { for (int i = 2; i < a; i++) { if (a % i == 0) { return 0; // not prime } } return 1; // prime } int main() { int a, b; printf("Enter the first number: "); scanf("%d", &a); printf("Enter the second number: "); scanf("%d", &b); if (isPrime(a) && isPrime(b) && abs(a - b) == 2) { printf("%d and %d are Twin Primes.\n", a, b); } else { printf("%d and %d are not Twin Primes.\n", a, b); } return 0; }

C++: Check Whether the given two number are Twin prime 


#include <iostream>
#include <cmath> // for abs() function
using namespace std;

bool isPrime(int a) {
    for (int i = 2; i < a; i++) {
        if (a % i == 0) {
            return false; // not prime
        }
    }
    return true; // prime
}

int main() {
    int a, b;
    cout << "Enter the first number: ";
    cin >> a;
    cout << "Enter the second number: ";
    cin >> b;

    if (isPrime(a) && isPrime(b) && abs(a - b) == 2) {
        cout << a << " and " << b << " are Twin Primes." << endl;
    } else {
        cout << a << " and " << b << " are not Twin Primes." << endl;
    }

    return 0;
}


Time Complexity:

  1. isPrime function:

    • The isPrime function iterates from 2 to a-1 to check if a is divisible by any number in this range. This takes O(a) time in the worst case for each prime check.
  2. Main Program:

    • The program calls isPrime twice, once for each number a and b.
    • Therefore, the time complexity is dominated by the isPrime checks, resulting in:
      • Time ComplexityO(a + b), where a and b are the input numbers.

Space Complexity:

The program only uses a few integer variables and does not use any additional memory-dependent data structures. Therefore, the space complexity is constant.

  • Space Complexity: O(1).

Summary: Check Whether the given two number are Twin prime

  • Time Complexity: O(a + b), where a and b are the input numbers.
  • Space Complexity: O(1) (constant space usage).


Thank You for reading this post. You can check out more articles like this on www.physicswallah.in 

If you have any doubts then you can post a comment below.

No comments:

Post a Comment